Kế hoạch bài dạy Toán 9 (Hình học) - Năm học 2022-2023
1. Kiến thức:
- Ghi nhớ và biết cách chứng minh các hệ thức về cạnh và đường cao trong tam giác vuông.
2. Năng lực
- Năng lực chung: NL sử dụng ngôn ngữ toán học: kí hiệu, tưởng tượng. NL tư duy: logic, khả năng suy diễn, lập luận toán học. NL thực hiện các phép tính.NL hoạt động nhóm. NL sử dụng các công cụ: công cụ vẽ
- Năng lực chuyên biệt: Xác định được đâu là pt bậc nhất hai ẩn và biểu diễn tập nghiệm của nó.
3. Phẩm chất
- Phẩm chất: Tự lập, tự tin, tự chủ
- Ghi nhớ và biết cách chứng minh các hệ thức về cạnh và đường cao trong tam giác vuông.
2. Năng lực
- Năng lực chung: NL sử dụng ngôn ngữ toán học: kí hiệu, tưởng tượng. NL tư duy: logic, khả năng suy diễn, lập luận toán học. NL thực hiện các phép tính.NL hoạt động nhóm. NL sử dụng các công cụ: công cụ vẽ
- Năng lực chuyên biệt: Xác định được đâu là pt bậc nhất hai ẩn và biểu diễn tập nghiệm của nó.
3. Phẩm chất
- Phẩm chất: Tự lập, tự tin, tự chủ
Bạn đang xem tài liệu "Kế hoạch bài dạy Toán 9 (Hình học) - Năm học 2022-2023", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Kế hoạch bài dạy Toán 9 (Hình học) - Năm học 2022-2023
1 Chương I: HỆ THỨC LƯỢNG TAM GIÁC VUÔNG Ngày soạn :08/09/2022 Tiết 1. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG I. MỤC TIÊU: 1. Kiến thức: - Ghi nhớ và biết cách chứng minh các hệ thức về cạnh và đường cao trong tam giác vuông. 2. Năng lực - Năng lực chung: NL sử dụng ngôn ngữ toán học: kí hiệu, tưởng tượng. NL tư duy: logic, khả năng suy diễn, lập luận toán học. NL thực hiện các phép tính.NL hoạt động nhóm. NL sử dụng các công cụ: công cụ vẽ - Năng lực chuyên biệt: Xác định được đâu là pt bậc nhất hai ẩn và biểu diễn tập nghiệm của nó. 3. Phẩm chất - Phẩm chất: Tự lập, tự tin, tự chủ II. THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU 1 - GV: Sgk, Sgv, các dạng toán 2 - HS : Xem trước bài; Chuẩn bị các dụng cụ học tập; SGK, SBT Toán III. TIẾN TRÌNH DẠY HỌC A. HOẠT ĐỘNG KHỞI ĐỘNG (MỞ ĐẦU) GV giới thiệu về chương trình hình học 9, các yêu cầu đối với môn học và các quy định khác. Trong tam giác vuông, nếu biết hai cạnh hoặc một cạnh và một góc nhọn thì có thể tính được các góc và các cạnh còn lại của tam giác đó hay không? Chương này chúng ta sẽ nghiên cứu vấn đề đó. B. HÌNH THÀNH KIẾN THỨC MỚI - Nêu các trường hợp đồng dạng của hai tam giác vuông. Bài học hôm nay sẽ áp dụng các trường hợp đồng dạng đó để xây dụng các hệ thức trong tam giác vuông. Hoạt động 1: Tìm hiểu về hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Hoạt động của GV và HS Nội dung GV nêu bài toán 1, hướng dẫn HS vẽ hình. HS: ghi GT; KL . Hướng dẫn học sinh chứng minh bằng “phân tích đi lên” để tìm ra cần chứng minh ∆AHC ∆BAC và ∆AHB ∆CAB 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. *Bài toán 1 2 bằng hệ thống câu hỏi dạng “ để có cái này ta phải có cái gì” Em hãy phát biểu bài toán trên ở dạng tổng quát? Viết tóm tắt nội dung định lí 1 lên bảng. + HS: Trả lời các câu hỏi của GV + GV: Theo dõi, hướng dẫn, giúp đỡ HS thực hiện nhiệm vụ + HS báo cáo kết quả + Các HS khác nhận xét, bổ sung cho nhau. GV: Đánh giá kết quả thực hiện nhiệm vu của HS GV chốt lại kiến thức GT Tam giác ABC ( = 1V) AH ⊥BC KL * b2 = a.b’ *c2 = a.c’ *Chứng minh: ∆AHC ∆BAC (hai tam giác vuông có chung góc nhọn C) AC HC BC AC = b b a b ' = b2 = a.b’ *∆AHB ∆CAB (hai tam giác vuông có chung góc nhọn B) AB HB BC AB = c c a c ' = c2 = a.c’ *Định lí 1: (sgk/64). * Ví dụ: Cộng theo vế của các biểu thức ta được: b2 + c2 = a.b’ + a.c’ = a.(b’ + c’) = a.a = a2. Vậy: b2 + c2 = a2: Hoạt động 2: Tìm hiểu về hệ thức liên quan giữa đường cao và các hình chiếu của hai cạnh góc vuông trên cạnh huyền. Hãy chứng minh : ∆AHB ∾ ∆CHA rồi lập tỉ số giữa các cạnh xem suy ra được kết quả gì ? + HS: Trả lời các câu hỏi của GV + GV: Theo dõi, hướng dẫn, giúp đỡ HS thực hiện nhiệm vụ + HS báo cáo kết quả + Các HS khác nhận xét, bổ sung cho nhau. GV Đánh giá kết quả thực hiện nhiệm vu của HS GV chốt lại kiến thức * GV cho HS nghiên cứu VD 2 2. Một số hệ thức liên quan tới đường cao. *Định lí 2 (SGK/65) GT Tam giác ABC ( = 1V) AH ⊥BC KL * h2 = b’.c’ *Chứng minh: ∆AHB ∆CHA ( HCAHAB ˆˆ = - Cùng phụ với Bˆ ) A H B C c b b’ c’ a h A H B C c b b’ c’ a h 3 (Đưa đề bài và hình vẽ lên bảng phụ ) ? Đề bài yêu cầu ta tính gì? ? Trong tam giác vuông ADC ta đã biết những gì? ?Cần tính đoạn nào? Cách tính? - GV đánh giá việc thực hiện nhiệm vụ của hs. * Gv: VD 2 cho ta một cách đo gián tiếp chiều cao AC chỉ với một dụng cụ đơn giản là chiếc êke (hoặc một góc vuông quyển sách), cách đo này không dễ dàng vì người đo phải chọn một vị trí đứng thích hợp. Một cách xđ chiều cao mà người quan sát có thể đứng ở vị trí bất kì dược nêu trong bài “Thực hành ngoài trời” ở bài 5. . = = h c b h HA HB CH AH ' ' h2 = b’.c’ *VD 2: Xem SGK/66 Tính đoạn BC: Áp dụng định lý 2 ta có: BD2=AB.BC Hay 2,252=1,5.BC BC= 2,252/1,5 = 3,375 (m) Vậy chiều cao của cây là : AC = AB + BC = 1,5+3,375 = 4,875 (m) C.HOẠT ĐỘNG LUYỆN TẬP Gv cho HS làm bài 1/68 2 Hs lên bảng trình bày +Gv gọi Hs khác nhận xét bài làm của bạn rồi chốt lại vđ Bài 1/68: a) Ta có (x+y) = 22 86 + (Đ/L Pitago) x +y = 10 Mà 62 = 10 . x (Đ/L 1) x = 3,6; y = 10 – 3,6 = 6,4 b) 122 = 20 . x (Đ/L 1) x = 122 : 20 = 7,2 y = 20 – 7,2 = 12,8+ D.HOẠT ĐỘNG VẬN DỤNG GV cho HS thảo luận bài tập sau: Một người thợ sử dụng thước ngắm có góc vuông đề đo chiều cao của một cây dừa. Khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người ngắm là l,6m. Hỏi với các kích thước trên thì người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). Gọi CB là chiều cao của cây dưa. CD là khoảng cách từ vị trí gốc cây đến vị trí chân của người thợ . D E B C A A C B D E 2,2
File đính kèm:
- ke_hoach_bai_day_toan_9_hinh_hoc_nam_hoc_2022_2023.pdf